

DUCA-LCD96 ETH

ETHERNET INTERFACE USER'S MANUAL

Vers. 0 Rev. B

REVISIONS

VER.	Rev.	DATA	REASON
0	A	20/06/12	First issue
0	В	29/06/17	Update for true-THD% calculation

TABLE OF CONTENTS

1. (JENERAL DESCRIPTION	. 5
1.1	ETHERNET CONNECTION	5
1.2	POWER-ON SELFTEST	5
2. I	NSTRUMENT SETUP	. 6
2.1	DEFAULT SETTINGS	7
2.2	INSTRUMENT CONFIGURATION	7
3. V	VEBSERVER	. 8
3.1	RESETTING PASSWORD	16
4. N	MODBUS-TCP	. 17
4.1	READ HOLDING REGISTERS FUNCTION (03h)	17
4.2	WRITE MULTIPLE REGISTERS FUNCTION (10h)	26
4.3	REPORT SLAVE ID FUNCTION (11h)	27

TABLE OF PICTURES

Picture 1 – PC network configuration	7
Picture 2 – First visualisation page	8
Picture 3 – Phase-neutral voltages	
Picture 4 – Active energies	
Picture 5 – Global analyzer values summary table	
Picture 6 – Username and Password setting	
Picture 7 – Modbus TCP configuration	
Picture 8 – Webserver language selection	
Picture 9 – Network configuration with enabled DHCP	
Picture 10 – Network configuration with disabled DHCP	
Picture 11 – Online Help	
Picture 12 – Communication error	

1. GENERAL DESCRIPTION

The instrument **DUCA-LCD96 ETH**, part code **DUCATI** energia **468001296**, is a model of network analyzers DUCA-LCD96 family with Ethernet interface, with the following main features available:

- Webserver functionality (that can handle multiple simultaneous accesses from different browsers) http protocol
- MODBUS-TCP communication protocol Modbus-TCP protocol

Both features are available simultaneously.

1.1 ETHERNET CONNECTION

The DUCA-LCD96 ETH interfacing to the Ethernet network is made via an RJ45 female insulated connector located on the back of the instrument.

The Ethernet interface is also equipped with the MDI/MDX auto-crossover functionality, for this reason the user can use any of both cables types, "patch" or "cross".

1.2 POWER-ON SELFTEST

At power-on the instrument performs a self-test of the hardware interface, if there is a failure initializing the instrument then the message "ERROR MODULE ETH" will be displayed. In these cases is necessary to contact DUCATI energia.

Keep in mind that the self-diagnostic performed by the instrument refers <u>only</u> to the internal hardware and dos not cover any errors of communication or interfacing to the Ethernet network.

2. INSTRUMENT SETUP

The Ethernet interface is available only in the DUCA-LCD96 ETH model (Part Number 468001296).

From the setup menu of the instrument is possible to perform the following settings:

From the "Communication menu"→	Communication me Enter?
Is possible to enable/disable the <i>DHCP</i> (Dynamic Host Configuration Protocol), selecting:	DHCP Enabled
"Enabled" or "Disabled"	Setup
Is possible to set the IP address of the device (only if DHCP is disabled).	IP address 172.29.101.68
When DHCP is enabled, this page shows instead the IP address obtained from DHCP.	Setup
Is possible to set the host name of the device. It can be changed only the last 3 digits within the range $001 \div 999$; then the Host name will be ANALYZER-xxx (where xxx = $001 \div 999$).	Host name ANALYZER-001
The host name is used to access the device by name rather than by IP address, useful expecially when the address is obtained dynamically (DHCP enabled).	Setup

NOTES:

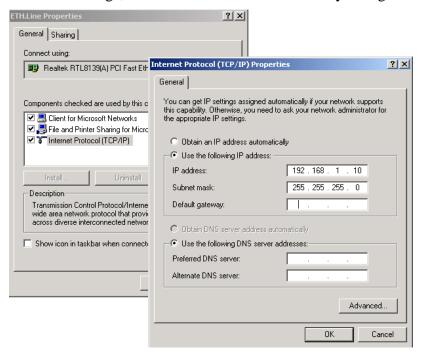
- The device doesn't accept an IP address like: 0.0.0.0
- Whenever the network cable is disconnected from the instrument, or when DHCP is enabled and it is not reachable or as long as it has not assigned an address, the IP address is automatically set to 255.255.255.255
- The host name is managed by the NetBios service. In networks where NetBios isn't available, it will be possible to access the device only using its IP address.

All previous configurations are also possible via the Ethernet interface, accessing the "NETWORK" menu of the Webserver.

2.1 DEFAULT SETTINGS

The default settings of the instrument are as follows:

• DHCP = Disabled


• IP = 192.168.1.239

• Host name = ANALYZER-001

2.2 INSTRUMENT CONFIGURATION

To configure the instrument for the first time, you can alternatively proceed in one of the following ways:

- 1. Enable the DHCP from the setup menu of the instrument, connect the DUCA-LCD96 to the Ethernet network and then, from a PC also connected to the network, access the device with any browser (Internet Explorer, Mozilla Firefox, etc.) typing http://analyzer-001 (default *Host name*). At this point is possible to change appropriately all the configuration parameters. Should the Host name be not available, read from the setup menu of the instrument the IP address assigned (page "IP Address" of the "Communication menu") and use it to access.
- 2. First configure the PC with an IP = 192.168.1.xxx, with xxx other than 239, and with Subnet Mask = 255.255.255.0. To do this start from Settings → Control Panel → Network Connections → Local Area Connection (LAN) → Properties → Internet Protocol (TCP / IP) (Properties), select "Use the following IP address" and set IP and Subnet mask with the previous mentioned parameters (see next picture for more details). Then press "OK" and confirm all the settings, then restart the PC to activate any changes made

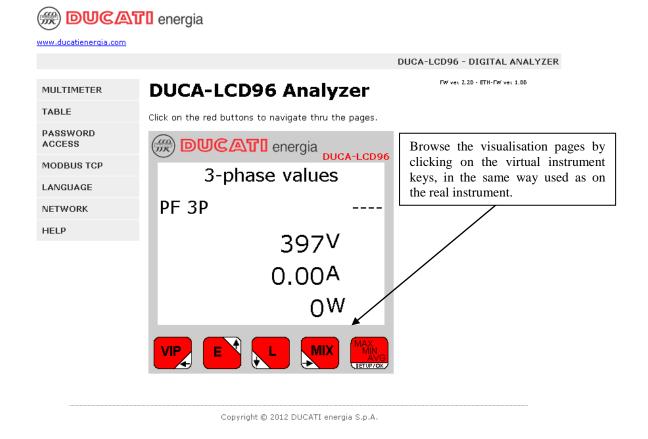
Picture 1 – PC network configuration

.

ⁱ The access to the instrument through its Host name will be possible only if the NetBios service is enabled.

Afterwards, still leaving the <u>DHCP</u> of the instrument <u>disabled</u>, alternatively proceed as follows:

- Connect the PC directly to the DUCA-LCD96 using a network cable
- Alternatively, connect the PC directly to the Ethernet network. This option is <u>only</u> possible if there aren't already present on the network other devices with IP address 192.168.1.239 and = 192.168.1.xxx (where xxx = address previously set on the PC)


After that, it will be possible to access the instrument via any browser (Internet Explorer, Mozilla Firefox, etc.) typing http://192.168.1.239 or http://analyzer-001. At this point it's possible to change the various configuration parameters appropriately.

NOTE: if you have problems opening the Web page, check that the proxy server should be disabled.

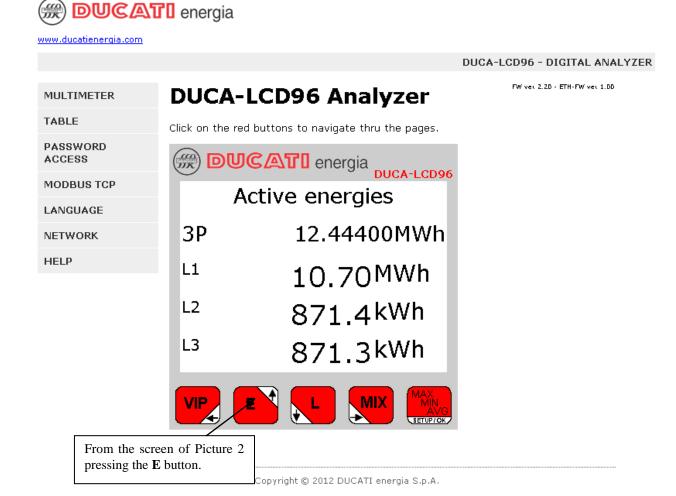
3. WEBSERVER

The instrument has an internal Web server, making available to the user some pages of visualisation and configuration. In this way the Web server makes available a **virtual instrument** on the remote user's PC. Is possible to access the device via any browser (Internet Explorer, Mozilla Firefox, etc.) typing http://instrument-IP-address or http://instrument-host-nameⁱ.

After logging the device, the first page displayed will be the following (menu **MULTIMETER**):

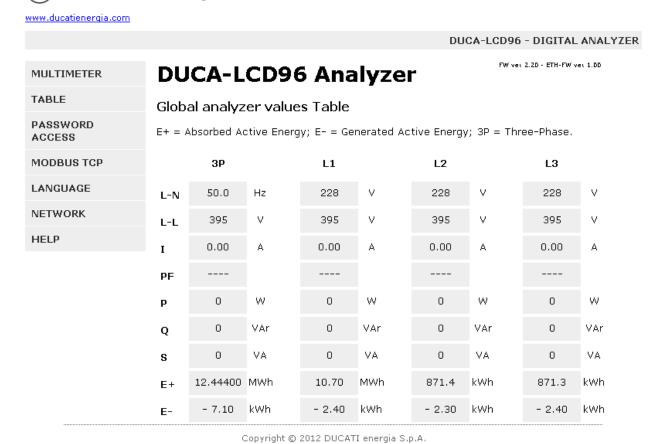


Picture 2 – First visualisation page


It will be possibile to show other remote instrument's measures, browsing through the various pages of the visualisation menu, clicking the instrument keys. See some examples in the following pictures.

ATTENTION: from the FW 2.25 and ETH-FW v2.00 pages THDFV, THDFV%, THDFI, THDFI% (displayed on the MIX menu) have been replaced by the true THDV% and true THDI%

Picture 3 – Phase-neutral voltages



Picture 4 – Active energies

DUCATI energia

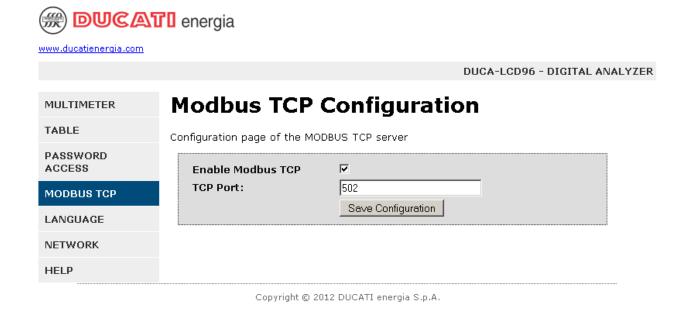
Selecting the **TABLE** menu located in the top left, allows to see some of the measured values shown in tabular format.

 $Picture \ 5-Global \ analyzer \ values \ summary \ table$

Selecting the **PASSWORD ACCESS** menu allows to enter the edit page of *Username* and *Password*. This page is access protected, the default values are the following:

• Username: **admin** (default)

• Password: **admin** (default)


Once valid access data have been inserted, these will remain valid for the overall browser session. From now on it will be possible to modify *Password* and *Username* and access other configuration menus.

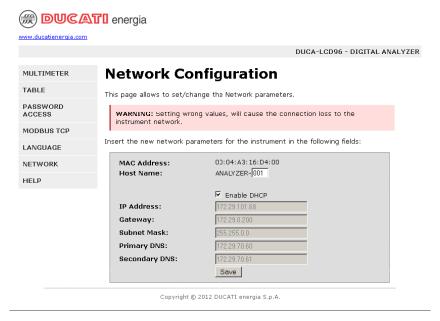
Picture 6 – Username and Password setting

If case the **Password is forgotten**, it is possible to reset the password to the default value: for this, please refer to chapter 3.1.

Selecting the **MODBUS TCP** menu (menu protected by password, authentication required) allows to enable the protocol on the device and configure the TCP port address (default = 502).

Picture 7 - Modbus TCP configuration

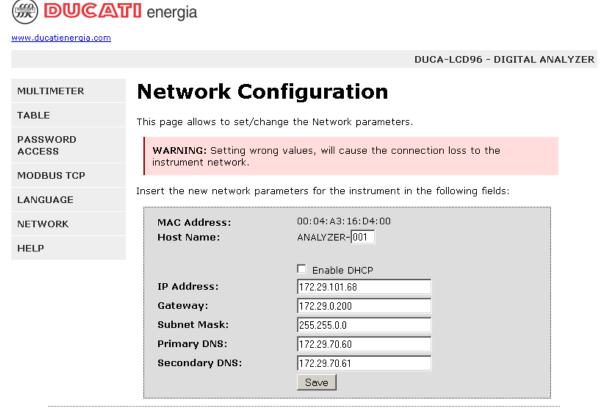
FileName: Man_Ethernet_Eng_DUCA-LCD96_v0rB.doc Pag. 12 di 28



Selecting the **LANGUAGE** menu (menu protected by password, authentication required) allows to change the web user interface language (default English) by loading the appropriate language files with the extension ".bin". The Language files (Italian and English) are available on the **DUCATI** energia FTP server, at the link below: download the file of interest on your PC and then select it from the page indicated in the picture below.

Picture 8 - Webserver language selection

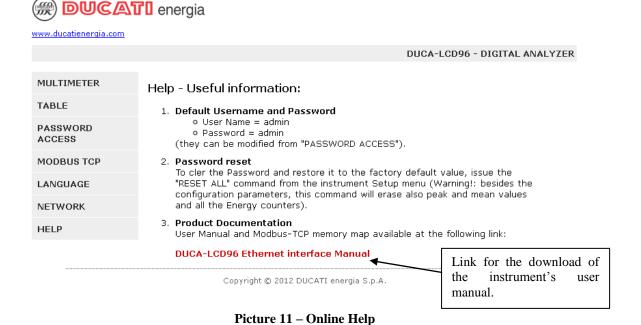
Selecting the **NETWORK** menu (menu protected by password, authentication required) allows to select or modify the instrument network interface parameters: *Host name*, *IP address*, etc.



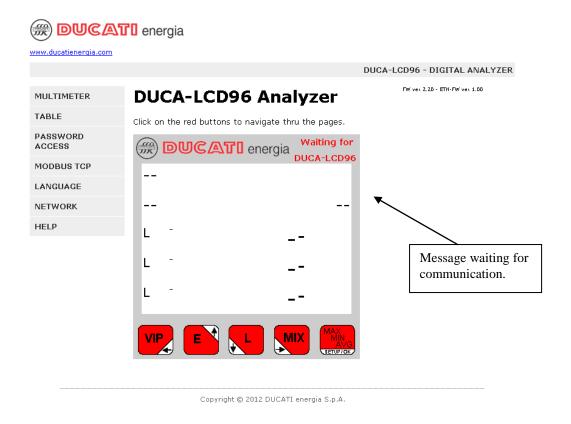
Picture 9 – Network configuration with enabled DHCP

NOTE: the *Host name* is used to access the device by name rather than by IP address, useful expecially when the IP address is obtained dynamically (DHCP enabled). The *Host name* is handled by the NetBios service; in networks where this service isn't present, is will be possible to access the device only using its IP address.

Disabling the DHCP, the configuration parameters must be insert manually.


Copyright © 2012 DUCATI energia S.p.A.

Picture 10 - Network configuration with disabled DHCP


NOTE: the parameters *Primary DNS* and *Secundary DNS* are not used.

Selecting the **HELP** menu allows to access to a short online Help of the instrument, in which is also available the link to download this manual and other documents.

NOTE: during the access to the device and the visualization of the different menu pages, sholud communication's errors occurr, it will displayed a screen as shown below (with no measured values).

Picture 12 – Communication error

3.1 RESETTING PASSWORD

The default values for accessing the protected Webserver pages, are the following:

• Username = admin

• Password = admin

In case your password and username are forgotten, to reset them to the default values, is necessary to use a command to "Reset All" in the setup menu of the instrument (plese take care, as well as all the configuration parameters of the instrument, the command also resets the peak values, mean values and all energy counters).

To reset, enter the setup menu of the instrument

From "Reset menu"→	Reset menu Enter?
Select "Reset all".	Reset all? Enter?
Then confirm.	Total reset conf <-=esc OK=conf.

Total reset on the device

4. MODBUS-TCP

4.1 READ HOLDING REGISTERS FUNCTION (03h)

The following table describes the **measurements** that the user can **read** from the instrument using the function READ HOLDING REGISTERS – function 3 (03h); this function reads in WORDs, so "Signed/Unsigned Long are 2 consecutive WORDs.

MODBUS-TCP address	Measurement description	Unit	Format	
1000h	Three-phase Equivalent Voltage	Volt	Unsigned Long	
1002h	Voltage between Phase and Neutral line 1	Volt	Unsigned Long	
1004h	Voltage between Phase and Neutral line 2	Volt	Unsigned Long	
1006h	Voltage between Phase and Neutral line 3	Volt	Unsigned Long	
1008h	Line Voltage (Line 1 – Line 2)	Volt	Unsigned Long	
100Ah	Line Voltage (Line 2 – Line 3)	Volt	Unsigned Long	
100Ch	Line Voltage (Line 3 – Line 1)	Volt	Unsigned Long	
100Eh	Three-phase Equivalent Current	mA	Unsigned Long	
1010h	Current Line 1	mA	Unsigned Long	
1012h	Current Line 2	mA	Unsigned Long	
1014h	Current Line 3	mA	Unsigned Long	
1016h	Three-phase Equivalent Power Factor (*1)	Thousandths	Signed Long	
1018h	Power Factor Line 1 (*1)	Thousandths	Signed Long	
101Ah	Power Factor Line 2 (*1)	Thousandths	Signed Long	
101Ch	Power Factor Line 3 (*1)	Thousandths	Signed Long	
101Eh	Three-phase Equivalent Cosφ ⁱⁱ (*1)	Thousandths	Signed Long	
1020h	Cosφ ⁱⁱ Line 1 (*1)	Thousandths	Signed Long	

 $^{^{\}rm ii}$ The instrument does not provide the Cos\phi, in its place it's sent the corresponding value of Power Factor.

.

		1	·
MODBUS-TCP address	Measurement description	Unit	Format
1022h	Cosφ ⁱⁱ Line 2 (*1)	Thousandths	Signed Long
1024h	Cosφ ⁱⁱ Line 3 (*1)	Thousandths	Signed Long
1026h	Three-phase Equivalent Apparent Power	VA	Unsigned Long
1028h	Apparent Power Line 1	VA	Unsigned Long
102Ah	Apparent Power Line 2	VA	Unsigned Long
102Ch	Apparent Power Line 3	VA	Unsigned Long
102Eh	Three-phase Equivalent Active Power	W	Signed Long
1030h	Active Power Line 1	W	Signed Long
1032h	Active Power Line 2	W	Signed Long
1034h	Active Power Line 3	W	Signed Long
1036h	Three-phase Equivalent Reactive Power	Var	Signed Long
1038h	Reactive Power Line 1	Var	Signed Long
103Ah	Reactive Power Line 2	Var	Signed Long
103Ch	Reactive Power Line 3	Var	Signed Long
103Eh	Three-phase Active Energy	Hundreds of Wh (Wh*100) ⁱⁱⁱ	Unsigned Long
1040h	Three-phase Reactive Energy	Hundreds of Varh (Varh*100)	Unsigned Long
1046h	Frequency	mHz	Unsigned Long
1060h	Maximum Current Line 1	mA	Unsigned Long
1062h	Maximum Current Line 2	mA	Unsigned Long
1064h	Maximum Current Line 3	mA	Unsigned Long
1066h	Three-phase Maximum Active Power	W	Signed Long
1068h	Three-phase Maximum Apparent Power	VA	Unsigned Long
1070h	Three-phase Average Active Power	W	Signed Long
1072h	Three-phase Average Apparent Power	VA	Unsigned Long

 $^{^{}m iii}$ Example: if the reading from address 103Eh returns the value 325, means that the Active Energy is 32500Wh.

MODBUS-TCP			
address	Measurement description	Unit	Format
1074h	Active Energy Line 1	Hundreds of Wh (Wh*100)	Unsigned Long
1076h	Active Energy Line 2	Hundreds of Wh (Wh*100)	Unsigned Long
1078h	Active Energy Line 3	Hundreds of Wh (Wh*100)	Unsigned Long
107Ah	Reactive Energy 1	Hundreds of Varh (Varh*100)	Unsigned Long
107Ch	Reactive Energy 2	Hundreds of Varh (Varh*100)	Unsigned Long
107Eh	Reactive Energy 3	Hundreds of Varh (Varh*100)	Unsigned Long
1080h	Maximim Three-phase Average Active Power	W	Signed Long
1082h	Voltage Thd L1 (*2)	*1000	Unsigned Long
1084h	Voltage Thd L2 (*2)	*1000	Unsigned Long
1086h	Voltage Thd L3 (*2) *1000		Unsigned Long
1088h	Current Thd L1 (*2)	*1000	Unsigned Long
108Ah	Current Thd L2 (*2)	*1000	Unsigned Long
108Ch	Current Thd L3 (*2)	*1000	Unsigned Long
108Eh	Maximum Average Active Power L1	W	Signed Long
1090h	Maximum Average Active Power L2	W	Signed Long
1092h	Maximum Average Active Power L3	W	Signed Long
1094h	Maximim Three-phase Apparent Active Power	VA	Unsigned Long
1096h	Maximum Apparent Active Power L1	VA	Unsigned Long
1098h	Maximum Apparent Active Power L1	VA	Unsigned Long
109Ah	Maximum Apparent Active Power L1 VA		Unsigned Long
109Ch	Average Active Power from Pulses Input CH1	W	Unsigned Long
109Eh	Average Reactive Power from Pulses Input CH2	Var	Unsigned Long
10A0h	Active Energy from Pulses Input CH1	Hundreds of Wh (Wh*100)	Unsigned Long

MODBUS-TCP address	Measurement description	Unit	Format
10A2h	Reactive Energy from Pulses Input CH2	Hundreds of Varh (Varh*100)	Unsigned Long
10A4h	Current Threshold for Timer 2 Activation	mA	Unsigned Long
10A6h	Three-phase Apparent Energy	Hundreds of VAh (VAh*100)	Unsigned Long
10A8h	Apparent Energy L1	Hundreds of VAh (VAh*100)	Unsigned Long
10AAh	Apparent Energy L2	Hundreds of VAh (VAh*100)	Unsigned Long
10ACh	Apparent Energy L3	Hundreds of VAh (VAh*100)	Unsigned Long
10AEh	Generated Three-phase Active Energy	Hundreds of Wh (Wh*100)	Unsigned Long
10B0h	Generated Active Energy L1	Hundreds of Wh (Wh*100)	Unsigned Long
10B2h	Generated Active Energy L2	Hundreds of Wh (Wh*100)	Unsigned Long
10B4h	Generated Active Energy L3	Hundreds of Wh (Wh*100)	Unsigned Long
10B6h	Generated Three-phase Reactive Energy	Hundreds of Varh (Varh*100)	Unsigned Long
10B8h	Generated Reactive Energy L1	Hundreds of Varh (Varh*100)	Unsigned Long
10BAh	Generated Reactive Energy L2	Hundreds of Varh (Varh*100)	Unsigned Long
10BCh	Generated Reactive Energy L3	Hundreds of Varh (Varh*100)	Unsigned Long
10BEh	Generated Three-phase Apparent Energy	Hundreds of VAh (VAh*100)	Unsigned Long
10C0h	Generated Apparent Energy L1	Hundreds of VAh (VAh*100)	Unsigned Long
10C2h	Generated Apparent Energy L2	Hundreds of VAh (VAh*100)	Unsigned Long
10C4h	Generated Apparent Energy L3	Hundreds of VAh (VAh*100)	Unsigned Long
11A0h	Current Transformation Ratio (CT)	Unit (range 1-2000)	Unsigned Long
11A2h	Voltage Transformation Ratio (VT)	Unit (range 1-600)	Unsigned Long
11A4h	Pulse Energy Weight (*3)	Unit (range 1-4)	Unsigned Long
1200h	Partial Balance Active Energy	Hundreds of Wh (Wh*100)	Signed Long
1202h	Partial Balance Reactive Energy	Hundreds of Varh (Varh*100)	Signed Long

MODBUS-TCP address	Measurement description	Unit	Format
1204h	Partial Balance Apparent Energy	Hundreds of VAh (VAh*100)	Signed Long
1206h	Factor €/Energy (moneyFact)	Cents €/KWh	Unsigned Long
1208h	Factor CO2/Enrgy (CO2Fact)	Cents CO2/KWh	Unsigned Long
120Ah	Timer 1 free running	hh*100 + mm	Unsigned Long
120Ch	Timer 2 count-down	hh*100 + mm	Signed Long
120Eh	Average Active Power L1	W	Signed Long
1210h	Average Active Power L2	W	Signed Long
1212h	Average Active Power L3	W	Signed Long
1214h	Three-phase Equivalent Reactive Power	VAr	Signed Long
1216h	Average Reactive Power L1	VAr	Signed Long
1218h	Average Reactive Power L2	VAr	Signed Long
121Ah	Average Reactive Power L3	VAr	Signed Long
121Ch	Average Apparent Power L1	VA	Unsigned Long
121Eh	Average Apparent Power L2	arent Power L2 VA	
1220h	Average Apparent Power L3	VA	Unsigned Long
1222h	Maximum Active Power L1	W	Signed Long
1224h	Maximum Active Power L2	W	Signed Long
1226h	Maximum Active Power L3	W	Signed Long
1228h	Maximum Apparent Power L1	VA	Unsigned Long
122Ah	Maximum Apparent Power L2	VA	Unsigned Long
122Ch	Maximum Apparent Power L3	VA	Unsigned Long
122Eh	Insertion's configuration (*4)	Unit (range 1-4)	Unsigned Long
1230h	Status (*5)	-	Unsigned Long
1232h	IP address (*6)	-	Unsigned Long
1234h	HOST NAME (*7)	E (*7) unit	

MODBUS-TCP address	Measurement description	Unit	Format
1236h	Slave-ID + FW Ver. (*8)	-	Unsigned Long
1238h	Three-phase Maximum Current	mA	Unsigned Long
123Ah	Three-phase Minimum Current	mA	Unsigned Long
123Ch	Minimum Current Line 1	mA	Unsigned Long
123Eh	Minimum Current Line 2	mA	Unsigned Long
1240h	Minimum Current Line 3	mA	Unsigned Long
1242h	Maximum Three-phase Voltage	V	Unsigned Long
1244h	Maximum Voltage Line 1	V	Unsigned Long
1246h	Maximum Voltage Line 2	V	Unsigned Long
1248h	Maximum Voltage Line 3	V	Unsigned Long
124Ah	Minimum Three-phase Voltage	V	Unsigned Long
124Ch	Minimum Voltage Line 1	V	Unsigned Long
124Eh	Minimum Voltage Line 2	V	Unsigned Long
1250h	Minimum Voltage Line 3	V	Unsigned Long

NOTES:

- (*1) Regarding the lines **Power Factor**, please note that:
 - in case of inductive Power Factor, its value will be positive; viceversa in case of capacitive Power Factor
 - when the Power Factor is undefined (current is zero), the instruments returns the value "2000" to report about this situation (it is the condition in which the instrument displays three dashes "- -")
 - **Cosφ**: the instrument does not provide Cosφ, and reports instead the corresponding Power Factor value.
- (*2) Regarding Current and Voltage **Thd** please take note that:
 - Until FW 2.24 and ETH-FW v1.01 the value in the map was ThdF (ThdF represents the normalised voltage and current crest factor)
 - in case the Thd is not computable (e.g. when current = 0), the instrument provides two words equal to FFFFh, corresponding to an invalid data (it is the condition in which the instrument displays three dashes "- -")
 - Total harmonic distortion (THDI e THDV) are expressed as ‰ of the foundamental:

$$THDI_{k}(\%) = \frac{\sqrt{\sum_{n=2}^{31} |Hi_{kn}|^{2}}}{|Hi_{k1}|} *1000 \qquad k = 1, 2, 3$$

$$THDV_{k}(\%) = \frac{\sqrt{\sum_{n=2}^{31} |Hv_{kn}|^{2}}}{|Hv_{k1}|} *1000 \qquad k = 1, 2, 3$$

$$THDV_{k}(\%) = \frac{\sqrt{\sum_{n=2}^{31} |Hv_{kn}|^{2}}}{|Hv_{k1}|} *1000 \qquad k = 1, 2, 3$$

With:

$$|Hi_{kn}| = \frac{\sqrt{(\text{Re}i_{kn}^{2} + \text{Im}i_{kn}^{2})}}{\sqrt{2} * 2^{8} * 10^{5}} [A]$$
$$|Hv_{kn}| = \frac{\sqrt{(\text{Re}v_{kn}^{2} + \text{Im}v_{kn}^{2})}}{\sqrt{2} * 2^{8} * 10^{3}} [V]$$

Con n = 2, ..., 31 e k = 1, 2, 3

 $|Hi_{kn}|$ = module of the n-th current harmonic of line k

Re i_{kn} = real part of the n-th current harmonic of line k

Im i_{kn} = imaginary of the n-th current harmonic of line k

 $|Hv_{kn}|$ = module of the n-th voltage harmonic of line k

Re v_{kn} = real part of the n-th voltage harmonic of line k

Im v_{kn} = imaginary of the n-th voltage harmonic of line k

(*3) Possible values for **Pulse energy Weight**:

- 1: 10 Wh/VArh per pulse
- 2: 100 Wh/VArh per pulse
- 3: 1000 Wh/VArh per pulse
- 4: 10000 Wh/VArh per pulse

Even in case the instrument has the Output programmed as Alarm function (i.e. it is not using the Pulse function), the command always returns the weight value previously programmed

(*4) Possible values for **Insertion's Configuration**:

• 1: GENERIC

• 2: THREE-PHASE

3: BALANCED THREE-PHASE

4: SINGLE-PHASE

(*5) **Status** (1230h): following the meaning of the four bytes sent:

BYTE	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	Not used			Status	Status	Status	Status	

		OUT3	OUT2	OUT1	OUT0
1	Not used				DHCP
2	Not used				
3	Not used				

Status OUTX = $1 \rightarrow$ out-X activated

Status OUTX = $0 \rightarrow$ out-X deactivated

 $DHCP = 1 \rightarrow DHCP$ enabled

 $DHCP = 0 \rightarrow DHCP$ disabled

(*6) **IP address** (1232h): returned on 4 byte, each describing an IP-address filed.

Example: 192.168.1.10 will be reported in:

Byte 3 = 10;

Byte 2 = 1;

Byte 1 = 168;

Byte 0 = 192;

(*7) **Host Name** (1234h): is the number (max 3 digits) to joint to the instrument name for the Host-Name service (NetBios)

Example: 14 yields the Host Name ANALYZER-014

(*8) **Slave_ID** + **FW ver.** (1236h): following the *Unsigned Long* 4-bytes values and their meaning:

BYTE	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	FW Ver. (Low Byte)							
1	FW Ver. (High Byte)							
2	Slave ID							
3	Fixed to 00h							

To get the actual Firmware version, the "FW Ver." filed should be divided by 100;

Example: Slave_ID + FW ver.= 0047 012Ch corresponds to

Slave ID = 71 (0047h)

FW Ver. = 3.00 (012Ch / 100)

The Duca-LCD96-ETH instrument has **Slave ID** = 71 (47h)

DATA FORMAT:

- **Unsigned Long**: it means a binary number of 2 unsigned words (32 bits)
- **Signed Long**: it means a binary number of 2 words (32 bit); when this number is negative it is expressed in 2's complement format.

In general, a part from the above mentioned case regarding Power Factor, when a value is not computable or exceeds its admitted input measurement range, the **null/invalid** value FFFF FFFFh is returned, that is the condition in which the instrument displays dashes "- - -"

4.2 WRITE MULTIPLE REGISTERS FUNCTION (10h)

The following table describes the possible **commands** the user can send to the instrument, using the function WRITE MULTIPLE REGISTERS – function 16 (10h).

MODBUS-TCP address	Command description	Unit	Format
11B0h (Reset Energie) 11B2h (Reset min/Max Peak) 11B4h (Reset Average) 11COh (Set Output status)	Commands for Reset and Outputs (*9)	-	2 Word
11A0h	Current Transformation Ratio (CT)	Units (range 1-2000)	Unsigned Long
11A2h	Voltage Transformation Ratio (VT)	Units (range 1-600)	Unsigned Long
11A4h	Pulse Energy Weight (*3)	Units (range 1-4)	Unsigned Long

NOTES:

(*9) Reset and Output Commands

It is possible to issue a **Reset** o to drive an **Output** using the command "Write Multiple Register" (Function 10h) at the following addresses, writing a specific value listed in the table below:

- 11B0h (to Reset Energy counters)
- 11B2h (to Reset min/Max Peak values)
- 11B4h (to Reset Average values)
- 11C0h (to drive an Output)

In order to execute a **Reset** command or to activate/deactivate an **Output**, the following value must be sent:

Address	Word	Description	MS Word	LS Word
11B0h	2	Energy Reset	11B0h	55AAh
11B2h	2	Peak Reset	11B2h	55AAh
11B4h	2	Average Reset	11B4h	55AAh
11C0h	2	Set (activate) Out 1	11C0h	55B1h
11C0h	2	Set (activate) Out 2	11C0h	55B2h
11C0h	2	Set (activate) Out 3 (iv)	11C0h	55B3h
11C0h	2	Set (activate) Out 4 (iv)	11C0h	55B4h
11C0h	2	Reset (deactivate) Out 1	11C0h	55A1h
11C0h	2	Reset (deactivate) Out 2	11C0h	55A2h
11C0h	2	Reset (deactivate) Out 3 (iv)	11C0h	55A3h
11C0h	2	Reset (deactivate) Out 4 (iv)	11C0h	55A4h

iv Prepared to manage outputs 3 e 4

Example: in order to activate Output 1, you must write at address 11C0h the value 11C055B1h (= 297817521 decimal).

In general, if a value different from one of those listed in the table is sent, the instrument will return the Exception "ILLEGAL DATA VALID" (03).

Regarding the **Output** management, the following rules apply:

- The Outputs can be driven only one at a time.
- The Outputs can be remotely driven only if programmed in the instrument as *Alarm function* (and not as Pulse outputs).
- An Output can be driver only if not currently already activated by an Alarm condition; in case an Output is currently "in Alarm", it cannot be deactivated by a remote command.

4.3 REPORT SLAVE ID FUNCTION (11h)

It is possible to get the instrument identifier (ID) using the function REPORT SLAVE ID – function 17 (11h). This function returns the instrument ID and the internal Firmware Version.

The answer format is the same as described for the Function 03 at the address location 1236h, with the description note (*8).

The Duca-LCD96-ETH instrument has **Slave ID** = 71 (47h).

DUCATI energia disclaims any liability for any damage or personal injury arising from incorrect or improper use of its equipments.

This document may be subject to changes without prior notioce.

Document code: Man_Ethernet_Eng_DUCA-LCD96_v0rB.doc - Version v0rB - June 2017

Via M.E. Lepido, 182 - 40132 Bologna - Italy Tel.: 051 6411511 - Fax: 051 6411690 - WEB: <u>www.ducatienergia.com</u>

E-mail (Commercial): info@ducatienergia.com

E-mail (Technical): Supporto_Analizzatori@ducatienergia.com